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An approximate method for calculating the noise generated by a turbulent #ow within
a semi-in"nite duct of arbitrary cross-section is developed. It is based on a previously
derived high-frequency solution to Lilley's equation, which describes the sound propagation
in a transversely sheared mean #ow. The source term is simpli"ed by assuming the
turbulence to be axisymmetric about the mean #ow direction. Numerical results are
presented for the special case of a ring source in a circular duct with an axisymmetric mean
#ow. They show that the internally generated noise is suppressed at su$ciently large
upstream angles in a hard-walled duct, and that acoustic liners can signi"cantly reduce the
sound radiated in both the upstream and downstream regions, depending upon the source
location and Mach number of the #ow. ( 2000 Academic Press
1. INTRODUCTION

The National Aeronautics and Space Administration has recently made a large investment
in the development of a new generation of supersonic transports. A primary design
requirement was that the aircraft be quiet enough to meet, or even exceed, existing noise
regulations, and it was decided that a mixer-ejector nozzle concept would be used to
accomplish this objective. The idea was that a signi"cant amount of the mixing noise would
be generated internally within the nozzle, and could therefore be considerably reduced by
using suitable acoustic linear designs. When recent tests of a prototype mixer-ejector nozzle
revealed that the peak internal turbulence level is more than twice that in the external
stream, it was decided that we needed to develop better prediction methods for this
internally generated noise. A general theory based on Lighthill's equation had already been
developed by Goldstein and Rosenbaum [1] and Dill et al. [2] extended this analysis to
account for mean-#ow refraction e!ects.

However, both theories involve the solution of a complicated Weiner}Hopf
problem, which can only be explicitly worked out for a slug (or &&top hat'') mean velocity
pro"le.

On the other hand many of the most successful jet noise predictions (e.g., the MGB code
[3]) are based on high-frequency Lilley's-equation solution [4], while the mixer-ejector tests
showed that the internal noise was of much higher frequency than the externally generated
0022-460X/00/310025#18 $35.00/0 ( 2000 Academic Press
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noise. We therefore decided to develope a theory based on the high-frequency
Lilley's-equation solution.

We assumed that the sound was generated by a superposition of statistically independent
and acoustically compact convecting-point quadrupoles and derived a formula for the
high-frequency acoustic radiation generated by such sources when they are located
within a semi-in"nite, parallel-walled nozzle. In fact, we supposed that the mean
#ow was completely parallel, but allowed the cross-sectional shape and velocity pro"le to be
arbitrary (as shown in Figure 1(a)), in order to account for nozzle-geometry e!ects. The
only variation in the streamwise direction is due to the boundary condition change at
the nozzle exit, which was allowed to have an arbitrary shape. Finally, an arbitrary
(frequency-dependent) acoustic impedance boundary condition was imposed at the
nozzle walls, in order to model an acoustically treated surface. The resulting solutions can
then be superimposed to calculate the sound generated by an actual turbulent #ow within
a nozzle.

While this work was primarily motivated by the need to analyze the internally generated
sound produced by a mixer-ejector nozzle, the analysis has many other applications, such as
to long-cowl jet engines with forced mixers, the design of e!ective acoustic liners that may
be required to absorb the noise radiated in speci"c directions, and to the design of nozzle
exit shapes that reduce the noise radiation below the #ight path.

Goldstein [5, equation (5.9)] developed a formula for the high-frequency sound radiation
from a convecting-point quadrupole source in an arbitrary, transversely sheared mean #ow.
This result was later extended by Durbin [6, 7] to account for a general (not necessarily
parallel) mean #ow. These formulas involve a ray-spreading factor that multiplies the
product of a source function*which describes the actual acoustic sources*with some
Doppler factors that account for the local source and mean #ow convection e!ects. The
spreading factor accounts for the mean-#ow variation along the path of the radiated sound
and can be calculated from geometric acoustics, or ray tracing.

The present paper shows that Goldstein's [5] formula still applies to the internally
generated noise and that only the ray-tracing analysis, which is used to calculate the
ray-spreading factors, needs to be modi"ed in order to account for the e!ect of the nozzle
walls. This is demonstrated in Section 2, where the notation is introduced and the Goldstein
[5] and Durbin [6] analyses are reviewed in some detail.

Three-dimensional ray tracing is fairly complex and somewhat di$cult to implement
numerically, but reference [5] shows that the three-dimensional ray-tracing computation
can be reduced to a much simpler two-dimensional calculation for the doubly in"nite jet
#ow considered in that paper. The rays can then be found by solving a single second-order
equation. Section 3, shows that this can also be done in the present problem. The results are
applied to an actual turbulent #ow in section 4 and specialized to an axisymmetric mean
#ow in a round duct with circular exit plane in section 5, where some numerical results are
also presented. Some conclusions and recommendations for further work are given in
section 6.

2. EXTENSION OF DOUBLY INFINITE JET SOLUTION TO ACCOUNT
FOR FINITE NOZZLE GEOMETRY

For de"niteness, we consider a unidirectional, transversely sheared, parallel mean
#ow:

v"i<;(x
t
), o"o6 (x

t
), c"cN (x

t
), p"constant, (1)



Figure 1. (a) Flow con"guration; (b) example of more complex con"guration to which analysis applies.
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with velocity v, density o, speed of sound c, and pressure p, exiting from a parallel-walled
nozzle, as shown in Figure 1(a). The result which we obtain, however, is much more general
and applies to more complicated #ow con"gurations, such as the one shown in Figure 1(b).
Equation (1) is an exact solution of the inviscid, non-heat-conducting equations of motion
for these con"gurations. x"Mx

1
, x

2
, x

3
N denote Cartesian co-ordinates with x

1
aligned

with the direction of the mean #ow, i< denotes the unit vector in this direction, and
x
t
"Mx

2
, x

3
N denotes the transverse coordinate vector. The nozzle exit is described by an

arbitrary, three-dimensional curve C, as shown in the "gure. The mean velocity ; is
assumed to go smoothly to zero at the generators of the nozzle wall, and to remain zero
beyond that surface. Also, the mean density and speed of sound approach their ambient
values at the wall. The analysis does not therefore account for forward #ight e!ects, but can
easily be extended to do so.
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Assuming that the ideal gas law applies, the linearized equation governing the acoustic
propagation on this #ow is [8]

Lp,
D

Dt A
D2

Dt2
!+ ) cN 2+pB#2cN 2+; )+

Lp

Lx
1

"C, (2)

where p now denotes the acoustic pressure #uctuation normalized by oN cN 2,

D

Dt
,

L
Lt
#;

L
Lx

1

(3)

denotes the convective derivative and t denotes the time. ! represents the acoustic source
distribution and is given by

C"

D

Dt
+ ) f!2+; )

Lf

Lx
1

, (4)

when this quantity is produced by a #uctuating force f
i
per unit volume. In the absence of

temperature #uctuations, Lilley's equation is obtained by replacing f
i
by the quadrupole

source distribution f
i
"Lu

i
u
j
/Lx

j
, where u

i
denotes the velocity #uctuation within the #ow.

Since the problem is linear, and the second term in equation (4) is negligible compared to
the "rst in the high-frequency limit, the solution for an arbitrary force distribution f

i
can be

obtained by superposition of solutions, say p
G
, to

L (p
G
e!iut)"

D

Dt
d (x!xs) e!iut, (5)

where u is the frequency, xs denotes the source position, and d is the Dirac delta function.

2.1. REVIEW OF DURBIN'S HIGH-FREQUENCY SOLUTION

By using matched asymptotic expansions, Durbin [6] showed that the solution to this
problem is given by

p
G
"p

G
(x Dxs, u)"(1!M s

1
) UeikS , (6)

in the high-frequency limit

k,u/cN
=
PR, (7)

where cN
=

is the speed of sound in the region of zero mean #ow,

M,;/cN
=
, (8)

S denotes the Eikenal, which satis"es the Eikenal equation

(1!Ms
1
)2!A

cN
cN
=
B
2

D s D2"0, (9)

and

s"Ms , s , s N,+S. (10)

1 2 3
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The solution to the "rst-order partial di!erential equation (9) can be obtained by the
method of characteristics by calculating S along the rays x (q), which are determined by the
ordinary di!erential equations

sR
1
"0, xR

1
"s

1 C1!A
;

cN B
2

D#
;cN

=
cN 2

, (11, 12)

xR
i
"s

i

sR
i
"

1

2

L
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i
A
s
1
;!cN

=
cN B

2 H , i"2, 3 (13)

subject to the initial conditions at the source position xs that the initial ray velocity is
proportional to the initial ray direction, say Mcosk, sink cos j, sink sin jN, i.e., that

x5
s
"c

s
Mcosk, sin k cos j, sink sin jN, (14)

where q is a parameter that varies continuously along the ray, the dot denotes
di!erentiation with respect to q, the subscript s denotes quantities evaluated at the source
position xs, and the proportionality constant c

s
is given by

c~2
s

"(cN
s
/cN

=
)2 C1!A

;
s

cN
s

sinkB
2

D. (15)

The amplitude function U is given by

U,

1

4ncN cN
=

(1!M
s
s
1
) S

c3s sin k
cJ

, (16)

where J denotes the Jacobian determinant

J"K
L (x

1
, x

2
, x

3
)

L (p, k, j) K, (17)

with dp"Ddx D denoting the distance along the ray.
Once the ray equations (11)}(13) are solved, the Eikenal can be found by integrating the

equation

SQ "s ) x5 , (18)

and the velocity #uctuation u
G
, corresponding to the normalized acoustic pressure

perturbation p
G
, can be calculated from

u
G
"cN 2 sU eikS/cN

=
. (19)

The important thing to notice is that the derivation of these results is completely
independent of any boundary conditions that are imposed on the surface R of the duct, and
the termination curve C of the duct exit. The latter gives rise to the so-called defracted
radiation which [9] is of higher order in frequency than the direct and re#ected radiation
and can therefore legitimately be neglected in the high-frequency limit.
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2.2. MODIFICATION OF SOLUTION TO ACCOUNT FOR THE DUCT WALLS

The conditions at the surface of the duct are accounted for by imposing boundary
conditions on the solutions to the ray equations (11) } (13) at the point where the rays reach
the boundary to produce a re#ected wave, say Mp

`
, u

`
N, corresponding to the incident wave,

say Mp
~
, u

~
N (see, for example, Pierce [9]).

The re#ected wave is still given by equation (6) with equation (16), but multiplied by
a re#ection coe$cient, say R. The Eikenal S is obtained by integrating equation (18)
through the re#ection.

Thus, since the Jacobian determinant (and therefore U) is continuous across a re#ection
[10], the pressure and velocity on the boundary & are given by

p
G
"U (1#R) eikS (20)

and

u
G
"cN

=
U (s

~
#Rs

`
) eikS (21)

(recall that ;"0 and cN"cN
=

at R).
The usual impedance boundary condition for a locally reacting surface involves only the

normal component of the velocity u
G
, and therefore only the normal component of the

propagation vector s. This condition is usually expressed in terms of an impedance, say
Z (which can, in general, be a function of the frequency u), as

Z"oN
=

cN 2
=

p
G

u
G
) n;

for x on R, (22)

where n; denotes the unit normal to R. Moreover, the normal component of s changes sign at
a re#ection, i.e.,

s
~
) n;"!s

`
) n; for x on R. (23)

Substituting this along with equations (20) and (21) into equation (22) yields the expression
for the re#ection coe$cient,

R"

g#1

g!1
, (24)

where

g,!(s
~
) n; )f, (25)

and f"Z/oN
=

cN
=

is a normalized impedance. Notice that ZPR and RP1 for a hard
wall.

The tangential components of s on the other hand remain unchanged by the re#ection,
and it therefore follows from equation (11) that

s
1
"constant, (26)

which is equal to the far"eld value of this quantity for any ray that propagates to in"nity
(which are the only ones we are interested in here). In this region (where the mean #ow is
zero), the acoustic rays are straight lines and are therefore given by

x"xs#R Mcos h , sin h cos/ , sin h sin/ N, (27)

= = = = =
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where R can be taken as the distance between the source point and the observation point,
and h

=
and /

=
denote the far"eld polar and circumferential angles, respectively, shown in

Figure 1.
It therefore follows from equations (11)}(13) and the Eikenal equation (18) that RQ "1,

and that

s
1
"cos h

=
. (28)

The Jacobian determinant (17) becomes

J"R2 sin h
= K

L (h
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, /
=

)

L (k, j) K, (29)

and it now follows from equations (12), (14), and (28) that
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Eliminating c
s
between this and equation (15) shows that h

=
depends only on k, and not

j, and that
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Inserting this into equation (16) and using equation (29) shows that

UP
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=
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It follows from equations (6) and (20) that

p
G
PURM eikS, (33)

where we have put

RM ,
m
<
i/1

R
i
, (34)

and the R
i
denote the individual re#ection coe$cients for each of the m re#ections that the

ray undergoes before leaving the duct. Also, it follows from equations (13), (18) and (28) that

S"(x
1
!xs

1
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=
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0
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t
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t
). (35)

2.3. APPLICATION TO MOVING POINT SOURCE

As indicated in the Introduction, the sound radiated by an actual turbulent #ow can be
calculated in terms of the pressure "eld p generated by superposition of point quadrupole
sources moving downstream with the mean #ow. We therefore consider the source
distribution
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t) Q

ij
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where u
s
denotes the source frequency, and ;

c
is the convection speed of the source, whose

strength is Q
ij
.

The corresponding acoustic "eld can be calculated from the "xed source solution p
G

by
superposing Fourier components and using the Green's formula [5]

p"
Q

ij
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P p
G
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i
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j
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c
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Integrating by parts to transfer the derivatives from the source term to the Green's function,
and carrying out the integrations with respect to y

t
and q gives
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For clarity, we begin with the case where only a single ray reaches the observer. The result
will then be corrected for multiple ray e!ects in a relatively obvious manner. Inserting
equations (33) and (35) into equation (38), and using the fact that (at lowest approximation)
the partial derivatives operate only on the frequency-dependent terms in the exponent, we
obtain
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Then, carrying out the integration, "rst with respect to xs
1

(to obtain a d-function), and
then with respect to u, shows that
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where we have put M
c
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=
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Then it follows from equation (32) that
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in the far "eld where M"0, which, except for some minor notational changes, and the
inclusion of the re#ection coe$cient RM , is the same as equation (5.9) of reference [5]. (Note
that RM "1 for a hard walled duct) The normalized wall impedance f, which appears in this
equation through the re#ection coe$cient RM , must be evaluated at the actual (or
observation) frequency

u"u
s
/(1!M

c
cos h

=
), (43)

and not the source frequency u .

s
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It is convenient to allow the transverse orientation of the quadrupoles to vary with source
position. This amounts to changing the orientation of the xs co-ordinate system or,
equivalently, referencing the angle j to a di!erent angle, say j

0
(xs). Then it follows from the

results given in reference [5] that p
2

and p
3

are given explicitly by

p
2
"

q
s
cos (j!j

0
)

1!M
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=
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3
"
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0
)
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c
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=

, (44)

where

q,S
(1!M cos h

=
)2

(cN /cN
=
)2

!cos2 h
=
. (45)

When multiple rays (which we individuate by a superscript in parentheses) reach the
observer the far-"eld pressure is given by the somewhat more complicated formula

D p D2P
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where * denotes the complex conjugate, and the dependence on the transverse source
coordinates, r

s
, /

s
, and the emission angle j enters through
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0
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where i denotes the number of rays reaching the observer.

3. REDUCTION OF ORDER OF RAY EQUATIONS

Goldstein [5] introduced the two-dimensional ray distance S de"ned by (see equation
(2.19) of that reference)

K
dx

t
dS K"1. (48)

It follows from equations (9), the "rst of equations (13), (28) and (45), that q is related toS by

dS

dq
"q. (49)

Equations (13) can then be combined to obtain the second-order system

d

dS
q

dx
t

dS
"+

t
q, (50)

where +
t
denotes the cross stream divergence. This is the same as equation (2.23) of reference

[5], where it is shown, by introducing the polar co-ordinates

/"tan~1 (x
3
/x

2
), r"Jx2

2
#x2

3
, (51)
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that it can be reduced to the single second-order equation

1

I

d

d/

r2q

I
"

Lq
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, (52)

where

I,Sr2#A
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d/B
2
, (53)

which is to be solved subject to the initial conditions
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"r

s
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s
) at /"/

s
, (54)

where /
s
is the circumferential angle of the source point.

Inserting equations (13) and (49) into the boundary condition (23), using equation (51)
and taking / as the independent variable, shows that the appropriate boundary condition
for equation (52) is

1

I
`
C
dr

`
d/

!r
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tan (/!b)D"
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I
~
C
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~
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!r
~
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where we have put

n;,Mcosb, sinbN. (56)

This boundary condition must be imposed on all rays reaching the cylindrical surface
containing the duct wall whenever

x
1
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e
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2
, x

3
), (57)

where x
1
"x

e
(x

2
, x

3
) is the equation for the termination curve C. x

1
can be calculated as

a function of / along the ray by inserting equations (28), (49), (51), and (53) into equation
(12) to obtain
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1
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=
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=
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4. APPLICATION TO SOUND RADIATED BY ACTUAL TURBULENT FLOWS

Equations (46) and (47) can be used to calculate the power spectral density of a spectral
distribution of sources of band width Du

s
by putting Q

ij
Q*

kl
equal to (1!M

c
cos h

=
)

W
ijkl

Du
s
[11]. However, pressure spectra are measured per unit observation frequency *u:

Du"

Du
s

1!M cos h
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c =
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(see equation (43)) and it therefore follows that the directivity of the spectra at constant
source frequency u

s
(due to a source at xs) is given by

1

Du
D p D2P

k4
s
W

ijkl
D

ijkl
(4n R)2 cN 2

s
cN 2
=

(1!M
s
cos h

=
)2

. (60)

This result can now be used to calculate the sound emitted by an actual turbulent #ow by
assuming that the turbulent eddies behave like compact sound sources, and using Lilley's
equation to show that the spectral source strength W

ijkl
is related to the fourth-order,

two-point, time-delayed correlation function of the turbulence,

R
ijkl

(xs, n, q)"u@
i
u@
j
uA
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i
u@
j
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k
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l
, (61)

in the usual way by

W
ijkl

"

=

P
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Peiu
s
q R

ijkl
(xs, n, q) dn dq, (62)

where the single prime indicates that the quantity is evaluated at the position and time
(xs@, t), the double prime indicates the position and time (xsA, t#q),

n"xsA!xs@!i<;
c
q (63)

and

xs"Mxs@
1
, 1
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2
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2
), 1

2
(xs@

3
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3
)N (64)

denotes the mean position of the source.
Since the sound "eld is always produced by a distribution of sources rather than by single

point source, the "nal result will involve an integral of equation (60) (and consequently of
equation (47)) over the transverse source co-ordinates r

s
and /

s
. Then, since S (n)

0
is a function

of these co-ordinates, the contribution from the cross-coupling terms in equation (47) will be
smaller than the contribution of the m"n terms by a factor of (at least) u~1@2, which in
a strict asymptotic sense is negligible in the high-frequency limit. However, the
zero-mean-#ow computations by Boyd et al. [12] suggest that the asymptotic convergence
may be relatively slow for sources close to the wall (which result in small values of S(n)

0
!S(m)

0
in equation (47)), and that the interference e!ects may not be insigni"cant even at relatively
high frequencies*particularly at smaller angles to the downstream axis where the sound
"eld is expected to be maximal. However, the turbulent #ows which are of interest here, will
probably introduce signi"cant random #uctuations in the phases of the disturbances, which
will tend to uncorrelate the pressure #uctuations corresponding to di!erent ray paths. We
therefore feel that it is best to neglect the interference e!ects, which amounts to replacing
equation (47) by

D
ijkl
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i
+
n/1

p
i
(n) p

j
(n)p

k
(n)p

l
(n) DRM (n) D 2 K

Lj(n)

L/
=
K. (65)

Since the fourth-order correlation tensor is very di$cult to measure experimentally, or
even calculate numerically, it is usual to assume that the turbulence is quasi-normal
and, consequently, that R can be expressed as the product of second-order correlations
ijkl
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[13, 14]
R

ijkl
"R

ik
R

jl
#R

il
R

jk
. (66)

In order to simplify this further, Goldstein and Rosenbaum [15], Kerschen [16] and,
more recently, BeH chara et al. [17] and Khavaran [18], assumed that the turbulence is
axisymmetric about the direction of the mean #ow. The analysis given in reference [1] (see
also Dill et al. [2]) then shows that

p
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where we have dropped the superscript (n) on the p
i
, and
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"R2
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, (68)

are symmetric in their indices.

5. APPLICATION TO ROUND DUCT WITH AXISYMMETRIC MEAN FLOW

Reference [5] shows that equations (52)}(54) can be solved analytically when the mean
#ow is axisymmetric. A similar procedure can be used to obtain an analytical solution to the
present problem, but it is probably easier to solve it numerically. However, it is important to
notice that in this case the resulting solution, whether obtained analytically or numerically,
will depend on j, / and /

s
only in the combinations /}/

s
and j!/

s
, since the coe$cient

q in equation (52) is independent of /, i.e., / appears only as an independent variable. This,
in particular, implies that j!/

s
is a function of /

=
!/

s
, r

s
and h

=
. Moreover, calculations

of the ray trajectories for sources located within the nozzle show that j is a discontinuous,
multi-valued function of /

=
, due to the sudden change of boundary conditions at the nozzle

lip. This is illustrated in Figure 2, which is a plot of /
=

versus j for the indicated source
location. Thus, even though /

=
is necessarily a single-valued function of j, the "gure shows

that the converse is certainly not true.
These observations can be used to simplify the calculation of the sound spectral density

due to a ring source of radius r
s
, which is often used as source model in axisymmetric jets.

The ring source solution involves evaluation of integrals of the form

P
2n

0

sinp (j(n)!/
s
) cosq (j(n)!/

s
) DRM (n) D2 K

dj(n)

d/
=
K d/

s
, (69)

for p, q"0, 1, 2, which, for polar angles at which all emitted rays reach the far ,eld, can be
written as

P
2n

0

sinp (j(n)!/
s
) cosq (j(n)!/

s
) DRM (n) D2 K

d (j(n)!/
s
)

d/
s

K d/
s

"P
2n

sinp jM (n) cosq jM (n) DRM (n) D2 djM (n) (70)

0



Figure 2. Far"eld circumferential angle vs. initial circumferential angle for Mach number pro"le (72) with
a"0)1, b"6, M(0)"0)9 and source position r
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since, for a given r
s
and h

=
, RM depends on /

=
!/

s
only through j!/

s
. The integrals in

equation (70) must be summed over all j(n) values corresponding to any given value of /
=

, in
order to account for all of the rays reaching a given observation point.

As shown by the numerical results presented in the next subsection, some of the rays are
cut o! by the duct when the far-"eld polar angle h

=
becomes su$ciently large, in which case

the last integration in equation (70) should be con"ned to those rays that reach the far "eld.
If we now choose the reference angle j

0
in equation (44) to be equal to /

s
, the quadrupole

sources will have the same orientation relative to the radial direction for all /
s
, i.e., the

quadrupole source distribution in equation (60) will be axisymmetric when W
ijkl

is
independent of /

s
. Then, since equations (44), (45), (65), and (67) show that the entire /

=
dependence in equation (60) is of the form (69), it follows that the sound "eld emitted by
a ring of uncorrelated, equi-strength quadrupole sources with radius r

s
, and the same

orientation relative to the radial direction, is independent of the circumferential observation
angle /

=
, i.e., it is axisymmetric.

When DRM D"1 (i.e., for a hard-walled duct) and when all rays reach the far "eld, it follows
from equations (44), (45), (67), (69) and (70) that
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This means that the sound radiated by a ring source in a hard-walled duct is not only
independent of the mean velocity pro"le within the jet, but is also una!ected by the presence
of the duct for the far-"eld polar angles at which all rays reach the far "eld. Of course, this
result only applies when the phase cancellation between multiple rays can be neglected.
Also, since r

s
d/

s
is the element of arc length, the total sound radiated by the ring source will

be directly proportional to the radius r
s
.

For isotropic turbulence QM
ij
"7QM

0
, and it follows from equation (45) that equation (71) is

independent of h
=

when M
s
"M

c
.

5.1. NUMERICAL RESULTS

Results for the directivity patterns due to a ring source within a round duct were
computed for a constant mean speed of sound, cN,cN

=
, and mean Mach number pro"les of

the form

M(r)"M
0

e!arb
!e~a

1!e~a
, (72)

where M
0
is the centerline Mach number and the parameters a and b are used to control the

pro"le shape.
The source terms in equation (67) were evaluated using the relations given by Khavaran

[18] for axisymmetric turbulence. The anisotropy is characterized by the two parameters

u2
2
/u2

1
and ¸

2
/¸

1
, where u2

1
and u2

2
are the streamwise and transverse mean square

turbulent velocities, respectively, and ¸
1

and ¸
2

are the corresponding correlation lengths

(see Khavaran [18]). Values for the anisotropy parameters of u2
2
/u2

1
"0)6 and ¸

2
/¸

1
"0)5

were used in the calculations.
Figure 3. Far"eld one-third-octave directivity plotted at constant source frequency for Mach number pro"le
(72) with a"0)1, b"6, M(0)"1)5, and source position r
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Figure 3 shows the results for the far "eld, one-third-octave directivity, plotted at
constant source frequency, for a ring source at r

s
"0)75r

0
, xs

1
"!2)0r

0
, where r

0
is the

duct radius, and a centerline Mach number of 1)5 with a"0)1, b"6, for a hard-walled duct
and a soft-walled duct of various impedances.

For su$ciently small far-"eld polar angles outside the zone of silence, all rays emanating
from the source reach the far "eld and, for the perfectly re#ecting, hard-walled duct
considered here, the duct has no e!ect on the far-"eld sound. At far-"eld positions beginning
in the upstream quadrant (i.e., h

=
'n/2), however, some of the rays become trapped within

the duct, causing the sound pressure levels to be reduced at these angles. The hard-walled
duct, therefore, only e!ects the sound "eld at su$ciently large angles to the downstream
axis which, in fact, lie in the upstream quadrant as indicated in the "gure. Since the number
of rays reaching the far "eld rapidly decreases as h

=
Pn, there is a sharp drop in the far-"eld

sound.
However, the soft-walled duct starts to e!ect the sound "eld as soon as wall re#ections

begin. Since an increasing number of rays re#ect (an increasing number of times) o! the
walls as the polar angle increases there is a substantial decrease in the far-"eld sound
relative to the hard-wall case. The wall impedances f"(1, !1) and f"(2,!1) are seen to
reduce the peak noise level by nearly 5 dB, relative to the hard-wall case. The results suggest
that the magnitude and phase of the normalized wall impedance can signi"cantly e!ect the peak
sound level, and a detailed parameter study to "nd the optimal value should be carried out.

Figures 4 and 5 show the e!ect of the source position on the far-"eld sound. The rays
undergo fewer wall re#ections when the source is closer to the nozzle exit (Figure 4), and the
acoustic linear therefore provides less noise suppression. When the source is closer to the
duct centerline (Figure 5), all rays exit the duct without re#ecting o! the wall when the far-"eld
polar angle is su$ciently small, and the acoustic liner has no e!ect on the sound "eld. Wall
re#ections start to occur when the polar angle is increased, and the liner reduces the far-"eld
sound, but only by a relatively small amount}again due to fewer wall re#ections.
Figure 4. Far"eld one-third-octave directivity plotted at constant source frequency for Mach number pro"le
(72) with a"0)1, b"6, M(0)"1)5, and source position r
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Figure 5. Far"eld one-third-octave directivity plotted at constant source frequency for Mach number pro"le
(72) with a"0)1, b"6, M(0)"1)5, and source position r
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Figure 6. Far"eld one-third-octave directivity plotted at constant source frequency for Mach number pro"le
(72) with a"0)1, b"6, M(0)"0)9, and source position r
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Figure 6 illustrates the e!ect of centerline Mach number on the liner e!ectiveness. At the
subsonic Mach number (M (0)"0)9) for which this result was obtained, a wall impedance of
f"(1,!1) again reduces the peak sound pressure level by about 5 dB, but produces
a much larger reduction than the previous (supersonic) case at large upstream angles.
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6. CONCLUSIONS AND DISCUSSION

It was shown that the high-frequency Lilley's-equation solution developed in reference
[5] for a doubly in"nite, transversely sheared mean #ow also applies to the noise generated
internally within a nozzle, provided appropriate boundary conditions are imposed on the
ray trajectories at the surface of the duct and a suitable wall impedance factor is included.

By assuming the turbulence to be axisymmetric about the mean #ow direction,
a simpli"ed expression for the far-"eld sound radiated by a turbulent #ow within the nozzle
was derived.

The analysis was applied to the case of a round duct with an axisymmetric mean #ow,
and it was shown that a hard-walled duct has no e!ect on the far"eld sound radiated at
polar angles (outside the zone of silence) su$ciently close to the duct axis. The numerical
results show that the duct cuts o! some of the rays for polar angles in the upstream
quadrant, and that acoustic liners can signi"cantly reduce the far"eld sound, but their
e!ectiveness depends upon the wall impedance, source position and mean #ow "eld. The
analysis can be used to carry out detailed parametric studies to "nd the optimal wall
impedance, acoustic source distributions, mean pro"le shape and nozzle geometry for
a given application.

The ray acoustics solution has the advantage of being applicable to nozzles to any shape
and any mean velocity pro"le (see Figure 1). The high-speed civil transport was expected to
use a rectangular mixer-ejector nozzle with a very complex mean velocity pro"le and
acoustically treated walls. Future work will evaluate the ray acoustics solution for this
geometry and make comparisons with some recent test data.

This paper does not address the issue of the di!racted radiation resulting from
acoustic rays striking the duct lip. However, a systematic high-frequency (kPR)
asymptotic analysis of this problem reveals that di!raction e!ects produce a correction
to the mean square pressure that is order (1/k) smaller than the direct and re#ected
radiation considered in this paper. Since this is smaller than the contribution due to ray
interference e!ects, which have already been neglected in the analysis, it does not make
sense to retain these di!raction e!ects here. It is also worth noting that the neglected
&shear-noise' source term appearing in equation (4), as well as higher order terms in the
geometric acoustics solution (6), could also contribute up to an O(1/k) correction to the
mean square pressure.

The analysis assumes that the axial mean #ow velocity vanishes at the duct wall (as well
as on its downstream extension). Alternatively, the mean #ow could be reduced to zero
through a thin boundary layer near the surface. In that case the impedance in the boundary
condition (22) would be replaced by an e!ective impedance imposed at the boundary layer
edge [19], which accounts for both the actual wall impedance and the boundary layer
e!ects. The re#ection coe$cient then becomes

R"

g#b
g!b

, (73)

where b"1!Md cos h
=

, with Md being the Mach number at the edge of the boundary
layer. Also, the ray trajectories would be modi"ed by passing through the in"nitesimally
thin shear layer that extends downstream of the duct wall.
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